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FOREWORD

This document represents a final report to the Nationai Aeronautics and Space
Administration for work performed under Test Task Order B.7 to Contract
NAS 3-23772. The task work span was from 21 September 1987 to 30 August 1939.

The tests reported herein are Series “C,” “D,” and “E,” of a planned series of six
tests that will verify the operation of a gaseous oxygen driven turbine powering a
liquid oxygen pump. No interpropellant seals or purge gas are required for this
concept.

The extended test schedule was the result of a need to convert the test unit
from a bearing test configuration to a complete turbopump between the Series “B”
and Series “C” tests.

Volume I, Reference 1 of this report covered the turbopump design, fabrication,
and Series A and B testing. Volume III will report on the testing with 400°F oxygen
turbine drive gas which will duplicate the expected engine operating conditions.

The site of the 400°F oxygen testing (Series F and G) is the NASA-JSC White Sands
Test Facility in New Mexico.
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ORBITAL TRANSFER VEHICLE OXYGEN
TURBOPUMP TECHNOLOGY

FINAL REPORT, VOLUME Ii
NITROGEN AND AMBIENT OXYGEN TESTING

R.J. Brannam, P.S. Buckmann, B.H. Cten,
S.J. Church, and R.L. Sabiers
GENCORP Acrojet TechSystems
Aerojet Propulsion Division
Sacramento, California 95813-6000

SUMMARY

This report documents the continuation of testing of a rocket engine turbop-
ump (TPA) designed to supply high pressure liquid oxygen propellant to the engine.
This TPA is unique in that it uses hot (400°F) gaseous oxygen as the turbine drive
fluid. It is a critical technology for the dual propellant expander cycle, a cycle using
both hydrogenr and oxygen as the working fluids for a maximum performance cryo-
genic propellant rocket engine.

The first volume of this report (Reference 1) documents the results of earlier
NASA LeRC funded work to determine the structural materials most compatible
with liquid and 400°F oxygen and the detailed design of the turbopump using these
materials. It also has a discussion of the TPA fabrication and the Series A and B tests
which verified the hydrostatic bearing concept in a bearing tester using many
common parts from the TPA. These tests successfully demonstrated the hydrostatic
bearing system at speeds up to 72,000 rpm in liquid nitrogen. Following these tests,
the housing and rotating assembly turbine impellers were finish machined to form
a complete oxygen TPA. Difficulties in finding a competent machine shop willing
to bid on this finish machining caused the start of the next series of tests to be
delayed well over a year. The test series documented herein, Series C, D, and E,
started on 15 February 1989 and were concluded on 21 March 1989.

viii
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Series C1 used liquid nitrogen in the pump and gaseous nitrogen as the turbine
drive 'gas. Series C2 used liquid oxygen as the pumped fluid with gaseous nitrogen
driving the turbine. The TPA performed as expected with limitations on the
turbine speed due to the use of nitrogen as the turbine drive fluid which has a lower
density than that of oxygen. In addition, the drive gas temperature was lower than
design temperature and the flow passage resistance was higher than expected.

Series D also used gaseous nitrogen drive while pumping liquid oxygen, but
the starts were made without any prepressurization of the hydrostatic bearings using
the separate bearing assist supply. This is a realistic condition for actual engine
operation, and results in a rubbing start. When the drive pressure exceeded the
“breakaway” force the rotating assembly accelerated normally.

Test Series E1 demonstrated the pure gaseous cxygen turbine drive with LOX in
the pump. This was done with the bearing assist system on. Series E2 again used an
ambient oxygen turbine drive but the bearing assist system was off, and the
hydrostatic bearing system provided its own pressurization after a rubbing start.

Total operating time during the testing was 2268 seconds. The test article had
14 starts without bearing assist pressurization. Operating speeds of up to 80,000 rpm
were logged (Test 135) with a steady state speed of 70,000 rpm (Test 165)
demonstrated.

The hydrostatic bearing system performed satisfactorily exhibiting no bearing
load or stability problems. Post test examinations of the journal and thrust bearing
surfi.ces showed minor evidence of operating wear. The silver plated bearing
surfaces showed some smearing from rubbing and one gouged area apparently due
to a particle passing through the bearing. No monel surfaces were exposed by the
silver plate wear. There was no evidence of any melting or oxidation due to the
oxygen exposure. There was one minor anomaly encountered that was not traced to
a particular cause. This was a slow axial motion, sinusoidal at 10,000 cpm, (=167 Hz)
of £ 0.0005 inch amplitude. It caused no problems during the testing but was plainly
evident in the distance readings from the axial probe.

The conclusion of Series C, D, and E testing made the turbopump hardware
available for refurbishment prior to continued testing. Testing as an operational
turbopump, pumping liquid oxygen and powered by hot gaseous oxygen to the
turbine, is scheduled in 1990 at the NASA White Sands Test Facility, New Mexico.

ix



1.0 INTRODUCTION
1.1 BACKGROUND

This oxygen turbopump test program supports the NASA-OAST plans for
development of a new orbit transfer vehicle (OTV) to be operational in the late -
1990s. Critical to the economical operation of a space based OTV is a new O2/Hj
rocket engine with capabilities superior to existing engines. Table 1.1-1 px;esents the
technology goals for the new OTV engine. It summarizes the characteristics of the
production RL-10 reference engine and theose desired in a new engine. In total, these
requirements represent a substantial advance in the state-of-the-art, and a
considerable challenge to rocket engine designers. Aerojet Propulsion Divisicn has
selected a unique engine cycle and turbopump designs in response to those A
requirements. The result is an advancement in the state of the art that combines a
heated oxygen driven turbine with a leng life hydrostatic bearing system to yield an
advanced, high performance oxygen turbopump.

11.1 Aerojet Dual Expander Cycle

N In a conventional (single) expander cycle engine hydrogen is
routed through passages in the combustiun chamber where it cools the wall and
acquires thermal energy to power the turbine of both hydrogen and oxygen pumps.
It is then routed to the injector for combustion. This cycle is fairly simple, and it
offers good performance potential as all propellant is burned in the combustion
chamber. It does not have the losses associated with open cycles. Its limitations are
related to dependence on only one propellant as a turbine drive fluid which, in
turn, requires interpropellant seals and purge gas for the oxygen turbopump. To -
obtain the needed power the hydrogen must be heated to a temperature very near to
the design limit for the copper based alloys employed for the chamber liner. With
the added limits imposed by the high number of starts, long operating times with-
out maintenance, and a 10:1 or greater engine thrust throttling requirement, the
hydrogen expander cycle is capable of only modest performance and life
improvements over the production RL-10 engine.

The Aerojet dual expander cycle alleviates these limitations by using oxygen as a
working fluid as well as hydrogen. This reduces the demands on the hydrogen

fatatess
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1.1, Background (cont.)

circuit as the oxygen turbopump is driven by heated oxygen. It also eliminates the
need for an interpropellant seal and the associated helium purge system weight
penalty. The oxygen is heated to approximately 400°F by flowing through a
LOX/GH3 heat exchanger and then through the regeneratively cooled nozzle exten-
sion. The flow schematic is shown in Figure 1.1-1. The hydrogen used to heat the
cold oxygen in the heat exchanger is the effluent from the hydrogen TPA turbine. It
provides the thermal energy to the oxygen at a thermodynamic cost to the hydrogen
circuit of the pressure drop across the heat exchanger. Also, both propellants are
delivered to the thrust chamber injector as superheated gases; an important aid to
combustion stability over a wide throttling range.

112  Oxygen Turbopump

" Key to this turbopump design is the use of a hot oxygen turbine
drive. Many turbopumps have been successfully used to pump liquid oxygen, but
hot oxygen has been considered too reactive to use as a turbine drive fluid. The
NASA LeRC has sponsored an extensive program in oxygen compatibility experi-
ments with various materials and under various conditions of pressure, tempera-
ture, and mechanical stress. A number of materials have been identified that can be
used in an oxygen turbopump with high confidence that the materials will not
ignite under either particle impact or minor rubbing at temperatures in the 400°F
range. Despite the experimental data, verification of an oxygen turbopump requires
successful completion of an extensive test program with a TPA in oxygen service.
At the completion of this program the TPA will have demonstrated compatibility of
the selected materials with cryogenic oxygen, ambient oxygen, and 400°F oxygen in
conditions closely approximating actual service.

The oxygen TPA also uses a number of design innovations other
than materials selection. The most critical is the self aligning hydrostatic bearing
system. The long life requirements of the OTV engine are incompatible with con-
ventional ball bearing systems that require rolling and sliding contact in liquid oxy-
gen at high speeds. A hydrostatic bearing was chosen for this TPA as it had the
potential for very long service life free of wear or fatigue life limits.
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1.0, Introduction (cont.)

The oxygen turbopump consists of a single stage full admission
axial flow turbine that drives an inducer and a two stage centrifugal pump, Figure
1.1-2. The centrifugal pump impellers face in opposite directions utilizing the back
or their hubs as part of the axial thrust bearing. A journal bearing is integral with
the second stage thrust bearing and is located between the thrust faces. A second
journal bearing, located between the pump and turbine, carries radial load only.
Both bearings are hydrostatically supported to permit self-alignment. Maximum
bearing capacity is achieved with parallel alignment. The inducer permits full speed
operation down to a :inimum Net Positive Suction Head of 80 ft-1bf/1bm of liquid
oxygen. An additional 17.3 gpm capacity is designed into the inducer. This flow is
turned radially before the first stage centrifugal impeller and is collected in an
annulus to then be conveyed to a boost pump hydraulic turbine.

A boost pump, not part of this contract, will be required to meet the
2 ft. Ibf/Ibm minimum Net Positive Suction Head at 162.7°R when flowing liquid
oxygen, Table 1.1-1. The 156 Lip iurbine powers the pumps to 75,000 rpm which
deliver 34 gpm of liquid oxygen at 4600 psi pressure rise. Complete design
specifications are discussed in Reference 1.

The design of this bearing system as wel' as the turbopump design,
materials selection, fabrication, and Test Series “A” and “B” are covered in detail in
Volume I of this report (Reference 1).

1.2 OBJECTIVES

The fundamental objective of the OTV oxygen turbopump test program is
to identify and develop the pertinent technoiogy for operating a high pressure LOX
pumping/GOX driven turbopump for extended duration with multiple start/stop
cycles. The main technology issue is the ignition potential from a metal rub or par-
ticle impingement in pure oxygen service. The overall goal is to provide extended
life and restart capability. The main thrust of the test program is to demonstrate the
viability of this design approach for high-speed LOX/GOX turbopumps, and to
develop a data base in this area.

Specific test objectives for series testing are outlined below.

et e BT L ek s X 5 3 R 5
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1.2, Objectives (cont.)
1.2.1 Test Series "Q”

The objective of Series “O” was to checkout all systems prior to
shaft rotation. This included a helium leak and moisture content check of the
turbbpump and all associated plumbing. The system was then chilled with liquid
nitrogen and all instrumentation was checked for function without shaft rotation.
At this time, the bearings were pressurized with liquid nitrogen to ensure proper
shaft/bearing alignment. '

122  Test Series “C"

The objective of Test Series “C” was to obtain turbopump
performance data of the OTV oxygen turbopump with minimum risk to the
hardware. Risk was minimized by powering the turbine with ambient temperature
gaseous nitrogen and by using a high pressure bearing assist to support the shaft
prior to and during low speed rotation. Performance was measured over a range of
40 0 120 percent design pump flowrate to speed ratios, Q/N, at intervals of 20%.
Test Series C1 used LN in the pump and bearings. These tests were followed by
Test Series C2 which used LO; in the pump and bearings.

123 Test Series “E1”

The objective of Test Series “E1,” was to demonstrate the pure
oxygen driven gas turbine for the first time. The turbine was plumbed to the
ambient GOX supply and it powered the pump, pumping LOX from zero to the
maximum operating speed with ambient GOX. Approximately five minutes of run
time was to be accumulated with the bearing assist system on.

124 Test Series “D”

The objective of Test Series “D” was to demonstrate a start of the
turbopump shaft system without the external bearing assist system. In this
configuration (unassisted bearing start) the bearings are initially supplied with
suction line pressure only. A discussion of the bearing assist system is given in
Section 2.1.2.3. Bearings were fed from the pump discharge so that shaft rotation




1.2, Objectives (cont.)

would start with bearing hydrostatic lift limited to pump discharge pressure. Series
“D" testing was run using GN2 as the turbine drive gas and LOX as the pumped

fluid.

1.25 Test Series “E2"

The objective of Test Series “E2” was to demonstrate six unassisted
bearing starts as in Series “D,” using an ambient oxygen driven turbine while
pumping liquid oxygen. Bearing lift-off was achieved with oxygen tapped from the
pump second stage discharge line.

1.3 SCOPE OF WORK
1.3.1 General

Aerojet Propulsion Division shall concuct a test program to
determine the performance and operaiing characteristics of the oxygen turbopump
for the Aerojet Orbit Transfer Vehicle engine design concept.

132 Specific Subtasks
1.3.2.1 Subtask I - Testing

Aerojet Propulsion Division shall conduct test evaluations to
determine the design and off-design performance and operating characteristics of
the oxygen turbopump previously designed, fabricated, and tested as a bearing tester.
Testing shall be conducted in accordance with the detailed test plan and shall consist
of the following series:

Series C: The turbopump configuration shall consist of bladed
pump and turbine stages but shal! utilize external pressurization
of the hydrostatic bearings. The pump fluid shall be liquid oxy-
gen and the turbine drive fluid shall be gaseous nitrogen. Tests
shall be conducted to verify overall turbopump performance and
to demonstrate the ignition-resistance of the pump cizcuit.
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1.3, Scope of Work (cont.)

1322

Series D: The same configuration shall be tested with internal
(pump discharge) pressurization of the bearings. The same fluids
shall be used. Tests shall be conducted to demonstrate the beaﬁng
start transient with internal pressurization and the ignition-resis-
tance of materials in the pump circuit.

- Series E: The same configuration as used in Series D shall be

tested with liquid oxygen as the pump fluid and gaseous oxygen
as the turbine drive fluid. Turbopump performance at nominal
and off-nominal operation shall be characterized. The ignition-
resistance of the turbine circuit shall be demonstrated.

Subtask II - Reporting

The reports shall be prepared and distributed in accordance with

contract requirements. In addition, a final formal report will be subnutted and will
cover the design, fabrication and testing.

1.4 RELEVANCE TO CURRENT ROCKET ENGINE TURBOPUMP DESIGN

The intent of this technology program is to demonstrate and reduce to
practice several key design innovations that, taken together, significantly advance
the design base for rocket engine turbopumps. These design innovations are:

1)  Use of hot (400°F) oxygen as a turbine drive fluid.

2) Use of the monel family of alloys along with various platings for
material’s compatibility with both liquid and hot oxygen.

3) Use of a hydrostatic bearing system in LOX to meet performance goals
and operating life goals well beyond current rocket engine require-
ments.

4) Use of an articulating, self adjusting spherical bearing system to hold
close running clearances by accommodating minor shaft motion and
misalignment.




1.4, Relevance to Current Rocket Engine Turbopump Design, (cont.)

5) Demonstration of a rotating assembly design that will operate subcrit-
ically over the operating range for a deep throttling engine.

6) Incorporation of unshrouded impellers to achieve a more stable head
versus flow operating characteristic (negative slope) over a 20:1 thrust
throttling range.

7) Elimination of the need for an interpropellant seal and a purge gas
system by using an oxygen turbine driving an oxygen pump.

1.5 FACILITY DESCRIPTION

The oxygen TPA testing was conducted at the Aerojet ‘A Zone' tes facility.
This test complex includes a central control room adjoining a laboratory experimen-
tal facility. An earth embankment separates the control room from the complex of
test bays. The oxygen TPA testing was done in Bay 7.

The facility is set up such that all valves are actuated from the control
room. Prspeilant tanks used in Series “C,” “D,” and “E” testing are located outside
Bay 7, either in other Bays or on the other side of the earth embankment. The pro-
pellants used in Series “C,” “D,” and “E” testing, nitrogen, helium, and oxygen, were
vented directly to atmosphere after passing through the TPA. Testing was con-
ducted remotely from the control room and monitored by video, sound, apd other
electronic instrumentation.

Figure 1.5-1 shows the TPA early in the installation period, mounted on
the test stand. Figure 1.5-2 shows the TPA, obscured by wires and lines, after the
intallation was completed.

10
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20 OXYGEN TURBOPUMP TESTING
2.1 TEST PREPARATION

21.1 Test Approach

The test program consisted of taking a fully operational turbopump
through a seties of tests, Table 2.1-1, progressively obtaining performance, opera-
tional and life experience. Test Series “C” and “E1” were setup with the bearing
inlet ports pressurized by a separate supply tank before power was supplied to the
turbine in order to ensure the bearings would lift-off the shaft assembly prior to
rotation (refer to the schematic in Figure 2.1-1). Test Series “C” and “D” used
gaseous nitrogen to drive the turbine, and Test Series “E1” and “E2” used gaseous
oxygen for turbine operation. Test Series “D” and “E2” were run without the high
pressure assist to the bearings in order to demonstrzte tank-head start conditions..

212 Facility Buildup
2121 Facility Requirements

The turbopump predicted performance tabulation shown in
Table 2.1-2 was provided to assist in determination of storage vessel capacities, line
sizes, test run durations, pressure capabilities, and other parameters impacting the
test facility design.

2122 Facility Schematic

Figure 2.1-1 is a schematic diagram depicting the turbopumyp
along with major test stand components and lines.

21.23 Hardware Description

The OTV LOX turbopump consists basically of a two-stage cen-
trifugal pump directly driven by a single-stage axial flow turbine (Figure 1.1-2). The
first pump stage incorporates an inducer section to meet Suction Specific Speed
requirements and to provide pressurization for the low speed boost pump which
would be used in a flight system. The interstage pump flow (Stage 1 to Stage 2) is
routed external to the main housing through two ducts connecting first-stage

13
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2.1-

TEST SERIES “C,” “D,” AND “E” OPERATING CONDITIONS

Maximum Speed Operating Conditions - Predicted Performance

Conditions

Pum

Pumped Fluid

Number of Stages

Weight Flow Rate -1b/sec

Volume Flow Rate -
Inducer - GPM

Volume Flow Rate -
Impellers - GPM

Net Postive Suction
Head - ft.

Suction Pressure - psia

Discharge Pressure - psia

Head Rise, Inducer - ft

Head Rise per Stage - ft.

Speed - RPM

Pump Shaft Power - HP

Turbine

Drive Gas

Tubine Shaft Power - HP
Inlet Temperature - °R
Inlet Pressure - psia

Exit Pressure - psia
Pressure Ratio

Flow Rate - Ib/sec

Design
Nominal

LO2
2
54
514

341

54.6
4,655
525
4,575

158 -

163

4,170
2,327
1.79
491

Test Series

<

LN2
2
43
58.0

38.5
97.1

50
2,500
459
3,504
70,500
102

GN,

510
2,200
1,250
1.76
3.32

16

2 E&ED” F1 &Y

LOy LO;
2 2

54 54
514 514
34.1 34.1
71.3 713
50 50
4,580 4,580
520 520
4,575 4,575
75,000 75,000
155 155
GN2 GO,
163 163
510 510
3,780 4,130
2,290 2,290
1.65 1.80
5.58 - 631

b




2.1, Test Preparation (con®.)

discharge to second-stage inlet. Double discharges are utilized on both pump stages
to reduce flow induced hydraulic radial loading. The shaft system is supported by
two hydrostatic bearings each supplied with high pressure propellant (LOX or LN3)
from the second stage pump discharge after pump discharge pressure exceeds
bearing assist pressure. Both bearings articulate on spherical seats, providing a
measure of compensation for misalignment and/or transient thermal distortion,
The hydrostatic bearings provide a very stiff radial and axial support for the rotor
system. This facilitates sub-critical operation with ample margin, and very small
shaft displacements at all speeds. The result is high efficiency in the turbo-
machirery by virtue of the close running clearances at which impellers and turbines
can be operated.

Provision is made for future addition of a hydraulic boost pump,
with an internal extraction point at the inducer discharge and delivered via a
flanged pc t in the outer housing. Although the boost pump was not incorporated
for this test, the flow for boost pump drive was tapped off, orificed and measured.

A separate high pressure liquid oxygen (or nitrogen) supply sys-
tem is used for bearing pressurization. Without this bearing assist pressurization
there will always be a brief period at low speed where the rotating assembly contacts
the bearing surfaces. As the speed increases and pi..mp output rises the rotating
assembly is stabilized wichin high pressure fluid films without any mechanical
contact. The rotating pump bearing journal and thrust faces have a thin dense
chromium surface treatment at potentia: contact points for a hard, low friction, wear
resistant surface. The turbine bearing journal was left with the untreated munel
K500 surface in an attempt to verify the prediction that the K500 has adequate wear
resistance without surface treatment. Post test inspection showed both the treated
and untreated surfaces in good condition. The corres, ~nding bearing surfaces are
silver plated to give a low friction, highly ignition resistant surface whose
mechanical wear products will not add combustible particles to a high speed stream
of oxygen. These surfaces then, are designed to accept the repeated rubbing starts
from actual engine operation.

17




2.1, Test Preparation (cont.)

For the initial testing the bearing assist system reduces potential
hazards and the wear attendant in over a hundred starts by prepressurizing the
bearings prior to rotation. Transition from bearing assist to pump provided
pressurization is done with a check valve that opens when the pump discharge
pressure is greater than the bearing assist pressure. In a flight system there would be
no special bearing assist; all pressurization would be from the pump discharge.

The test configuration of this turbopump is shown in Figure 2.1-2
and is further defined in Aerojet drawing No. 1197585-9 and sub-tier drawings. The
test unit incorporates special instrumentation which is detailed in Section 2.1.24.
The instrumentation provided with the turbopump assembly also includes axial
and radial shaft displacement sensors.

2.1.24 Instrumentation

The scheme for identification and location of instrument ports
on the test unit is presented in Section 2.1.2.4.1. The instrumentation list in Section
2.1.2.4.2 ‘ncltides units, ranges, and type of instrument for all parameters that were
recorded. The accompanying sketches relaie the symbols in the instrumentation list
to approximate locations on the test unit.

2.1.24.1 Port Location Scheme

The instrumentation list gives nomenclature and locations for
ports located on the test unit. The nomenclature refers to the symbol etched or
tagged on the test unit. The approximate locaticn of each port is designated by a dis-
tance and an angle as described in Figure 2.1-3.

2.124.2 Instrumentation List

The instrumentation list is divided into the three functional
types of wiring used to transmit the electrical output of the instruraents: (1) a two-
wire system, (2) a transducer system and (3) a high frequency system.

The two-wire system is ontlined in Table 2.1-3. The location of
the sensor is number coded, G, on the flow diagram Figure 2.1-4.

18




Alquassy dundoqun) uaBAxQ ALO Z-1°Z 814

ﬁ.lr\
VATI34M FOVLS ONT
ATENIASSY :
ONINVIE INISUNL /AS8V DNINV3S dnne
¥a1I12eM
_ Sovie et \uox.o:o: WIONANI
ONISNOH : w3dnam
INIUNL
28044 LNINIDIVI4SIO
o i
'3
= D Y b o

‘ / -

i .

}

ONISNOH 13Nt

aNIsuNL A2
Y010V aNtSUNL =t- a

vas anisuni . : ! ONISNOH 4NN
r._.q._r. aovis 181

 . /
ATTZZ0ON , .. 14/// /
N

~

ONISNOH 4NNd ONISNON
I0ViS GNT dRndO8UNL




Increasing -
0 Length ’
1° —td L
V-d-
90° 2700 = - 2702
/
0
180 L pump end 180°
turbine (driving) erd
Shaft rotates Shaft rotates
counterclockwise clockwise looking
looking at pump at turbine (driving)
(driven) end end
EXAMPLE:

. Port location illustrated on cylinder outside dismeter is noted

as (L,45) for *L" distance from outside surface of the puap end in a plane
45 degrees from the vertical center line in 3 clockwise direction when
looking from the turbine end. Location designator ignores radial distance.

Figure 2.1-3. Instrument Port Location Scheme
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2.1, Test Preparation (cont.)

The transducer system is outlined in Table 2.1-4. The location
of the sensor is number coded, @ , on the flow diagram Figure 2.1-5.

The high frequency system is outlined in Table 2.1-5. The loca-
tion of the sensor is number coded, [0}, on the flow diagram Figure 2.1-6.

213 Test Procedure
2.13.1 Test Descriptions
Test Series “Q"” - Checkout

After plumbing was completed in Bay A7, the system was leak
checked by pressurizing with 50 psig dry (less than 50 ppm water) helium. After
leaks were sealed, a helium purge at 50 psig was applied to the turbopump, and
maintained at all times when testing was not in progress.

An instrumentation checkout was performed next, followed by a

* moisture content check of the helium discharged from the TPA. When the mois-

ture content was found to be less than 50 ppm water, liquid nitrogen was introduced
in the pump circuit and bearing feed lines. The pressure in the bearing feed was
cycled from zero to 2800-3800 psia five times in order to align the bearing/shaft sys-
tem. ‘

Test Series “C1” - Pump, Bearing and Turbine Performance

The complete turbopump was operated with the inducer and
centrifugal pumps pumping liquid nitrogen and the turbine flowing ambient
temperature gaseous nitrogen plumbed per Figure 2.1-1. The turbopump was
powered by increasing turbine inlet pressure to 3000 psia maximum with a speed
limit of 68,000 rpm. Speed changes were limited to a rate of 4000 rpm/second.
Flows, pressures, speed and temperatures were recorded per Section 2.1.2.4. Bearing
assist pressure was initially set at 1200 psia minimum for this Series. Dual check
valves were employed to ensure the bearings were fed by the bearing assist system
pressure betore shaft rotation. Sufficient runs were conducted at approximately 20%
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2.1, Test Preparation (cont.)

intervals of design flow/speed ratio from 40% to 120% Q/N until the goals of Table
2.1-1 weré met for this series.

Test Series “C2” - Pump, Béaring and Turbine Performance

The complete turbopump was operated with the inducer and centrifugal pumps
pumping liquid oxygen and turbine flowing ambient temperature gaseous nitrogen.
The twwbopump was powered by increasing turbine inlet pressure to 4,850 psia max
with a speed limit of 70,000 rpm. Flows, pressures, speed and temperatures were
recorded per Section 2.1.2.4. Bearing assist pressure was 500 + 50 psia for this Series.
Sufficient runs were conducted until the goals outlined in Table 2.1-1 were
achieved.

Test Series “E1” - Demonstrate Oxygen Driven Turbine

The turbopump was operated with the inducer and centrifugal
pumps pumping liquid oxygen and turbine powered by ambient temperature
gaseous oxygen during this series. The turbopump was powered by increasing
turbine inlet pressure to 4000 psia with a speed limit of 63,000 rpm. Bearirg assist
pressure was 500 £ 50 psia for this series. Eight runs were necessary to achieve the
goals outlined for Series E1 in Table 2.1-1.

Test Series “D” - Demonstrate Unassisted Start of Bearings

The turbopump was operated with the inducer and centrifugal pumps flowing lig-
uid oxygen and the turbine flowing ambient temperature gaseous nitrogen. Bearing
assist pressure was reduced to 55 £ 5 psia (pump suction pressure) to simulate a
tank-head Jtart. Turbine inlet pressure was increased to 1600 psia with a speed limit
of 42,000 rpm. Six unassisted starts were necessary to achieve the 60 second run time
goal of Table 2.1-1.

Test Series “E2” - Demonstrate Unassisted Start with Oxygen
Driven Turbine

The turbopump was operated with the inducer and centrifugal
pumps pumping liquid oxygen and the turbine powcicd by ambient temperature
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2.1, Test Preparation (cont.)

gaseous oxygen. The turbopump was powered by increasing turbine inlet pressure
to 4000 psia with a speed limit of 63,000 rpm. Bearing assist and pump inlet
pressures were 55 + 5 psia for this series. Eight unassisted starts were necessary to
achieve the minimum run time requirement of this Series.

21312 Special Requirements

Aerojet Propulsion Division Test Laboratory furnished
alternate sized pump discharge orifices in addition to the one for nominal Q/N for
off-design Q/N operating points. Data points were recorded over the full speed
range. Turbine inlet pressure was not increased until saturated liquid was pment at
the pump inlet for all runs.

2.1.3.1.3 Starts with Bearings Assisted

In Series "C" and "E" the hydrostatic bearings were pressurized
directly from a high pressure 50 gallon run tank to assure lift-off in the bearings
before rotation. During LN2 pump tests, Series C1, the bearing assist pressure was
maintained well above pump discharge pressure to assure adequate critical speed
margin. Check valves were placed in the tank fed bearing supply line and a second
valve in the pump discharge fed bearing supply line, Figures 2.1-4 and 1.2-6. When
pump discharge pressure exceeded bearing assist pressure the pump then supplied
the high pressure to the hydrostatic bearings.

2.13.14 Starts with Bearings Unassisted

The bearing assist system pressure was reduced to pump inlet
Pressure (55 psia) for Series “D” and “E2” so that bearing lift-off occurred as a result
of pump discharge pressu. .one as discharge pressure increased with pump speed.
A speed kill was set at 80,000 rpm for this test.

The shaft experienced auto rotation during chill-in. This made
it a necessary to supply the bearings with 200 psia minimum assist pressure uniil 5
seconds before an unassisted start.
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* 2.1, Test Preparation (cont.)

2132 Data Requirements

The data furnished by the Test Laboratory for each test performed

- falls into five general categories. These are digital data, plots, floppy diskettes, mag-

netic tape and calculated performance. The requirements are described in the fol-

~ lowing sections. The Test Laboratory shall retain archive copies of all test data for a

minimum of 3 years.
21321 Digital Data

Digital printed data was provided for all test runs for quick look purposes,
in absolute engineering units. This data was in the form of a time history for the
test. An “edit ratio” was used in printing the data scans, for selected tests, to reduce
the volume of printed data. The digital data is in the form of computer printouts.
One copy of all digital data was furnished to the TPA Lead Engineer.

2.1.3.22 Plotted Data

Plots were pmvicfed of all pertinent parameters versus time for
selected test runs. One copy of all plots were provided to the TPA Lead Engineer.

21323 Floppy Diskettes

Raw data from selected tests was furnished to Engineering on
floppy diskettes in spread sheet format. These data were calibrated but not screened
or reduced.

21324 Magnetic Tape

Output signals from accelerometers and distance detector probes
were continuously recorded on magnetic tape. One copy of all magnetic tape data
will be stored at Aerojet Propulsion Division Test Area Archives for three years.
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2.1, Test Preparation (cont.)
2.13.25 Calculated Parameters

Performance calculations were performed for selected test runs.
Equations for these parameters (using variable names and channel numbers) are
provided in Appendix A.

2133 Photographic Records

The Test Laboratory has provided 8” x 10” color photographs doc-
umenting the test stand with the test unii mnstalled. These include both overall
views and close-up views. The photographs are sufficient in quantity and detail to
identify plumbing and instrumentation line connections. Figures 2.1-7 and 2.1-8 are
examples of such photos. Additional photographs were taken of the stand during
the test program. The test stand was videotaped during all testing, as was the
oscilloscope when a shaft orbit was visible.

22 TESTING

Testing of the OTV oxygen turbopump was performed at Aerojet
Propulsion Division from 9 February through 21 March of 1989. Testing was
divided into three main test series, “C,” “D,” and “E,” and performed in the order of
increasing risk.

221 Facility Checkout and TPA Chilldown

Before beginring high-speed turbopump testing, a facility checkout
and TPA chilldown tests were performed. Minor facility and TPA leaks werc sealed
on 9 February, and time was spent determining the most efficient method of
chilling the TPA to saturated LN2 temperature. A circuit bypass chill-in flow
around the highly restrictive pump discharge orifice had to be installed.

It was also during this phase that instrumentation problems were
addressed. The main problem was the nonfunction of displacement/speed probes.
The displacement probes used are quite sensitive to operating temperature and pro-
duce out-of-range readings when either the operating temperature or gap between
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2.2, Testing (cont.)

the probe and target are noi optimum. Since operating temperature was not
adjustable, experimentation with gap size was performed with each probe. The best
results of these experiments resulted in the axial probe functioning successfully for
nearly all tests, and the radial probes functioning only intermittently throughout
the test program.

The main area of work during the “checkout” phase was the
control of the two facility flow control valves. One of these valves was located
upstream of the turbine, and s¢rved to control the flow and inlet pressure to the
turbine. The other was located downstream of the turbine and served to control the
turbine back-pressure. Workir g together, these valves controlled the turbine
pressure ratio, turbine power and to some extent the axial thrust balance of the TPA.
The valves were critical to perfo:ming a successful TPA test. The main challenge in
controlling these valves was sequencing the valves to maintain the desired pressure
and pressure ratio rise rate. A start that was too fast resulted in automatic test kills
due to low pump suction pressure, high shaft speed or high pump discharge
pressure. Conversely, a start that was too slow resulted in an array of automatic test
kills associated with low shaft speed. A slow rate would also cause excessive
depletion of turbine supply gas sufficient to limit maximum operating speed.

Chill-in and facility checkout efforts culminated in a successful low
speed test, test number 124, on 20 February in which there were no automatic kills.
All work after the helium leak-check in this phase was performed with LN3 as the
pumped fluid and ambient temperature GNj as the drive gas.

222 Series C

Test Series C was the first attempt at obtaining performance data
from the OTV oxygen turbopump. Series C was further divided into Series C1 and

C2. Series C1 consisted of operating the turbopump at five operating points using a
GN3 turbine drive, pumping LN2. The successful completion of Series C1 qualified

the turbopump for operation at high speed and off-design flow without mechanical
difficulty. The total run time accumulated on the turbopump through Series C1 was
646 seconds.

34




2.2, Testing (cont.)

With the success of Series C1, it was time to introduce liquid oxy-
gen to the pump and bearings, and perform Series C2. Series C2 consisted of
operating the turbopump at seven different operating points (Q/N) using a GN2
turbine drive, pumping LOX. During the successful completion of Series C2, 748
seconds of run time were accumulated on the turbopump.

The change in pumped fluid from Series C1 to C2 led to a different
mode of operation for the bearings in each Series. In Series C1 the hydrostatic
bearings were pressurized from the bearing assist supply tank from 1200 psa to 3500
psia prior to shaft rotation. Since pump discharge pressure did not exceed this
supply pressure, the bearings were fed from the external pressure source throughout
the series. The change to LOX as the pumped fluid in Series C2 resulted in pump
discharge pressures high enough to properly supply the bearings. Because of this,
the exterral pressure source was decreased to 500 psia at the start of each Series C2
run. Du - g each run the pump discharge pressure exceeded 500 psia and the pump
discharge flow supplied the bearings with propellant. This self pressurization
continued throughout the run.

Among the accomplishments of the successful Series C2 were
verification of bearing system function, collection of LOX turbopump performance
data, and accumulation of run time exceeding that required. Series C2 was com-
pleted 4 March, 1989.

223 Test SeriesD

Utilizing the same propellants as Test Series C2, Series D consisted
of six turbopump starts, accumulating 87 seconds of run time. The reduction of
bearing assist pressure to 50-55 psia from 500 psia at the start of each run distin-
guished Series D from Series C2. This reduction of bearing assist pressure to the
range of pump suction pressure resulted in the pump discharge flow feeding the
bearings from start to finish of each run.

Six of these “unassisted” starts were performed instead of the single
one planned because automatic kills were encountered on the first five runs. These
kills were due to low pump suction pressure which was, in turn, caused by the
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2.2, Testing (cont.)

unsupported rotor “sticking” then suddenly rotating as the turbine inlet pressure
was increased. The “sticking” could have been due to a number of factors:

1) misalignment of the shaft causing binding that exceeded normal breakaway
torque, 2) a particle caught between the bearing and the shaft, or 3) a galled bearing
surface contacting the shaft. Its practical effect is to increase the threshold pressure
for shaft rotation without bearing assist. '

Test Series D demonstrated the turbopump’s ability to start without
an external bearing supply.

224 TestSeriesE

It was in Test Series E testing that an ambient temperature gaseous
oxygen turbine drive was first used-on the OTV oxygen turbopump. As in Series D,
all testing in Series E was performed with the pump operating at its design Q/N
value. A total of 787 seconds of turbopump operating time was accumulated during
Series E, divided between Series E1 and Series E2. ‘

Test Series E1 consisted or operating the turbopump for the first
time with GOX as the drive gas, pumping LOX. While accumulating approximately
seven minutes of run time during this series, the turbopump utilized a 500 psia
bearing assist pressure for each of the seven “assisted” starts. Series E1 was per-
formed prior to Series D as it was considered to be potentially less risky than
Series D.

Test Series E2, GOX/LOX turbopump operation with unassisted
bearing starts, was performed last as it was considered to be the highest risk series of
the program. Not only was the oxygen in all operating sections of the TPA, but the
bearing and shaft surfaces would generate some frictional heating during the
rubbing start. The pump operated at design Q/N while accumulating over six
minutes of run time and eight more unassisted starts. Test Series E2 ended with the
successful completion of Test 190 on 21 March 1989. This brought the test program
to a close.
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2.1, Test Preparation (cont.)

Table 2.2-1 is a listing of sample data at a single time slice for each
critical test. The table was originally compiled from quick look data with later
corrections from calibrated data where necessary. Total TPA run time as given in
the summary included time from the checkout tests not given in this table. Also,
the highest TPA speed was recorded on Test 135 where a decay in suction pressure
during a kill allowed a brief overspeed to 80,000 rpm. The tests were anumbered in
the order performed. The “Comments” column denotes the significance of each
test, including test series, turbine gas and pump/bearing fluid.

Throughout Test Series C, D and E, the OTV oxygen turbopump
was successfully operated for 2268 seconds (counting all rotating time) with a total of
fourteen starts without the bearing assist system.
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3.0 DISCUSSION OF RESULTS
3.1 OVERALL TURBOPUMP PERFORMANCE

The completion of Test Series “C”, “D”, and “E” has succeeded in demon-
strating the OTV Oxygen Turbopump to be mechanically sound while being oper-
ated to the maximum limits of the testing facility. Testing ranged over a pump Q/N
range of 40 to 120% of design. A maximum steady state speed of 69,800 rpm was
reached when pumping liquid oxygen, which is 93% of the nominal design speed of
75,000 rpm. A maximum discharge pressure of 4015 psia resulted at that same time,
which is 88% of the nominal design pressure of 4575 psia. A maximum turbine
inlet pressure 4829 psia was required to achieve this highest demonstrated power
point, which is 16% greater than design pressure. At the conclusion of 38 successful
data productive tests, the turbopump was found to be in operational condition with
. minor evidence of wear to the bearing surface plating.

During these test series the turbopump operated with an apparent cyclic
axial shaft motion. This anomaly was detected by the axial distance probe and was
basically undetected in the radial “Y” distance detector with only a small response in
the axial ”Z" direction. This axial motion was characterized b}; a constant frequency
of approximately 10,000 cpm. The amplitude was also constant at approximately
+.0005 in. “Waterfall” plots of the axial distance detector for two typical tests are
given in Figure 3.1-1 and Sigure 3.1-2. The liquid nitrogen pumping test, Figure 3.1-
1, used a separate pressurized tank to feed the bearings. The second plot documents
the same phenomenon extending right up to the last revolution (see the time line
marked F.S.2, fireswitch two) at the termination of the run period (the top time vs
frequency plot, Figure 3.1-2).

The predominant displacement peak starting at zero progressing upwards
to the right is the shaft speed signal with the amplitude derived from the .002 inch
step at the end of the shaft. The vertical predominant peak is the 10,000 cpm fre-
quency (~170 Hz)axial displacement and anomaly. Figure 3.1-1 shows the tank fed
bearing system operating with liquid nitrogen. Figure 3.1-2 illustrates the pump fed
bearing system cperating with LOX showing the same phenomena.
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3.1, Turbopump Performance (cont.)

The first diagnosis related the closing of the pump discharge flow meter
bypass valve with the initiation of the axia’ displacement signal. Closing of this
valve prior to the start of the unassisted bearing transient test, corresponded to the
appearance of the displécement signals at about the same shaft speed. Further anal-
ysis showed the inducer discharge pressure and the pump inlet pressure to a lesser
degree have the same cyclic frequency as the shaft axial motion. Since this is the
pressure going into the first impeller it is assumed the pressure in this impeller also
experiences the cyclic frequency which is the driving force for the rotating assembly.
Other pressure locations did not show this frequency possibly because of lower
response rate passages. Additional analysis is recommended prior to testing in the
same facility to identify the initial source of the pressure oscillation that causes the
rotating assembly axial motion. At this writing it is considered a facility related
paenomenon.

The overall TPA efficiency can be determined directly with currently
available measurements. The design TPA efficiency is the product of the design
values for turbine efficiency (0.67), the pump efficiency (0.59) and the tare efficiency
(0.97) for a value of 0.38. For the five 100% Q/N design point tests the average mea-
sured value (determined as described below) is 0.31. This lower than design value
indicates that either the turbine performance or pump performance or both are
below design but does not provide any information for determining which of these
possibilities is correct. It should be noted that the pump performance (efficiency) is
charged with the bearing and other recirculating flow losses. The recirculating flow
losses are much greater than expected.

Measurements are available to allow direct calculation of only the overall
TPA efficiency. This quantity is determined by dividing the delivered fluid power at
the pump discharge by the turbine isentropic available power. This overall quantity
can also be expressed as the product of the turbine efficiency, the pump efficiency
and the mechanical efficiency (which accounts for tare losses). In the absence of
individual pump and/or turbine test data, the estimation of how this overall value
is split up between these different components involves a large amount of subjec-
tivity guided by past experience and knowledge of general pump and turbine charac-
teristics. If separate turbine and/or pump tests had been conducted, characterization
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3.1, Turbopump Performance (cont.)

of individual component performance would be much more direct and accurate.
This is the justification for the data reduction and analysis procedure described in
Sections 3.2 and 3.3. It represents-a best estimate of individual pump and turbine
performance given the current test data constraints.

32 PUMP PERFORMANCE

This section summarizes the OTV LOX pump non-cavitating performance
‘test results. Five test series whose test objectives were outlined in Reference 7, were
successfully completed. Raw test data, such as pump volumetric flow rates, static
pressures and temperatures measured at strategic locations on the test apparatus
were recorded many times per second during the test. These raw data were later
reduced to engineering units and combined to calculate TPA performance param-
" eters using a data reduction computer program.

Data reduction results of ten tests were reviewed to verify the TPA perfor-
mance. Test No. 183 of series E2 which has LOX pump flow at 99.8% of the design
Q/N and GOX turbine fluid was selected to demonstrate the pump design point op- -
erating condition. Q/N is defined as the overall pump delivered volumetric flow
rate in gal/min divided by the TPA rotating speed in rpm. Five tests in test series C2
(test No. 154, 156, 165, 167, 164) with GN turbine fluid were selected to represent the
off design conditions from 47% to 128% of the deslgn Q/N. Four tests in test series D
(test No. 171, 172, 173, 174) at about 100% Q/N and GNj3 turbine fluid without bear-
ing assist systems were also included in this section to verify the repeatability of the
test results. Boost pump flow is charged to pump recirculating flows and is, there-
fore, not considered as part of the overall pump delivered flow.

The data reduction equations which calculated pump flow rate, head rise,
overall efficiency and pump horsepower were entered into the computer program
to facilitate the data reduction process. Fluid properties, such as density and vapor
pressure of the liquid oxygen, were taken from the fluid properties tables (Ref. 8) as a
function of local temperature and pressure at the measuring station. Pump overall
head rise (H in feet of fluid) was calculated from the total pressure difference
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3.2, Pump Performance (Cont.)

between pump inlet and outlet. The total pressure is the sum of the measured static
pressure plus the dynamic pressure calculated from the flow rate and pipe area at
the measuring station. A method to calculate overall TPA efficiency from available
test data is given in Table 3.2-1. This method was used in the data reduction
program.

Each test case was run at near constant speed and pump flow rate. Data
points were selected at a selected time instant after the shaft speed reached steady
state. A portion of Test No. 183 data reduc:’on computer print out is shown in Table
3.2-2 for example. It lists several time points around the selected design point, i.e.
183.023, where the shaft speed, NT-Z, was almost constant at 60626 rpm. Pump per-
formance parameters, i.e., normalized hiad (-HH/N**2) and overall pump efficiency
vs. normalized flow (Q/N), are better summarized in Figure 3.2-1. It compares the
test results from test series E2, D and C2 against the original predicted curves. The
slightly higher data points compared with the design curve is due to the increased
impeller tip diameter for additional head margin (see Ref. 9). The OTV TPA. using
propellant fluid bearings has a complicated internal recirculation flow network. At
off design Q/N conditions, the slope of the head curve can be offset from the predi-
cation due to different internal seal flow. The small variation might be a factor at
the 128% Q/N point noted on Figure 3.2-1.

A corrected pump overali eificiency is established by correcting the pump
flow rate for the excessive bearing flow rates. At the design operating point, the
measured bearing cooling flow rates are about double the design value. These
higher measured bearing coolant flow rates are believed to be caused by the internal
leakages across the pump housing piston ring seals between the 2nd stage inlet,
pump bearing supply inlet, turbine bearing supply and bearing discharge. The
pump volumetric efficiency, which is a part of the overall pump efficiency (Effpump
= Effhyd * Effyol * Effdsk windage), needed to be adjusted from the original design
value. This adjustment will decrease pump overall efficiency from 59% to 48% at
the design point. The pump off-design efficiencies were back calculated from the
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TABLE 3.2-1. Pumping System Calculated Efficiency (Ref. 13)

delivered fluid horsepower
shaft input horsepower

EFFp = = Total TPA Efficiency

delivered fiuid horsepower = (G*Q"H)/550/448.8

G = average fluid density through pump (Ibmv/ft**3)

Q = pump discharge volumetric flow rate (gpm)

H = pump {otal head rise (ft)

shaft input horsepower (not including tare torque) =
delivered pump fiuid power + boost pump turbine fluid power +
beuring supply fluid power + friction power sensed as heat

boo;t pump turbine + bearing fluid power =
(Cbp *Qbpt *Hind + Cout * (Qpbi + Qpi) * HY550/448.8

. friction power sensed as heat = delivered flow fluid losses +
pump bearing fluid losses +turbine bearing fluid losses =

(Gout” Q" Cp * (Tp out = Tind out) + Gpb * Qpbi " Cp * (Tp out ~ Tpi) +
Gind * Qi " Cp* (Tind out—Tind 1) + Cto * Qtvi* Cp * (Tp out = Tp 1)) * (3600/2545/448.8)

— - — —— — —— —— — — — ——— S— —— ——— - — — — —————  p_————— ————— ——— —an—

Symbols:

bp = boost pump
= turbine

p = pump

ind = pump inducer

i = inlet

0 = outlet

pb = pump bearing supply
= turbine bearing supply

T = fluid temperature (°F)
Cp = fluid specific heat (btw/lbm/F)
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3.2, Pump Performance (cont.)

turbine efficiency and the overall TPA efficiency (see turbine performance section
for details). As shown in Figure 3.2-1, the adjusted efficiencies fit into a revised pre-
dicted efficiency curve. The lower efficiency calculated from last data is credited to
the following three sources. First, the pump flow is not a fully adiabatic process.
There are heat transfers betwcen the turbine and the pump fluids, and some heat
losses to the ambient. These heat exchanges were not considered in the data reduc-
tion calculation. Second, the calculation was based on a simplified internal recir-
culation flow model. The internal flows can not be verified with the external flow
measurements available. Therefore significant uncertainty occurred from the leak-
age power loss calculation. Third, the pump discharge fluid temperatures were
measured with the film RTD (Resistance Temperature Detector) attached on the
pipe outside surface. Although this type of temperature measurement is very accu-
rate and responsive, it is inappropriate to use the wall temperature as the inside
fluid temperature without a correction during transient conditions.. The thermal
power loss in the efficiency calculation may therefore have some error. For this
TPA as tested, the efficiency corrected for bearing flow losses (“X” in Figure 3.2-1) are
considered representative of the final pump efficiency.

In general, this series of tests demonstrated that the TPA can be operated
close to the original design requirements. For the later TPA test series, the inter-
stage data, such as pressure and temperature measurements in the external
crossover pipes should be obtained to separate the pump stage performance. This
can provide more detailed information about the multistage pump performance
characteristics with hydrostatic bearings for future design improvements.

3.3 TURBINE PERFORMAINCE

Turbine performance estimates were based in part on the pump shaft
horsepower estimates presented in Section 3.2 of this report. Initially, the values for
the pump shaft horsepower were added to tare horsepower estimates and divided by
the ideal isentropic horsepower available to the turbine to define turbine efficiency.
However, when compared to the design turbire efficiency vs. U/Co curve,
(Reference 10), these data did not show the typical parabolic shape that is to be
expected (Ref. 1). Upon examination of the pump data, as described in the Pump
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3.3, Turbine Performance (Cont.)

Perfcrmance, Section 3.2, of this report, it was felt that the pump efficiency curve
was too high at Q/N values below design and too low at Q/N values above design.
This would account for some of the distortion to the turbine efficiency curve
mentioned above.

To adjust these curves to better reflect the real efficiency characteristics, it
was decided that a parabola should be fit from the zero efficiency point, through the
average of the turbine efficiencies at the design Q/N operating point, peaking at a
U/Co of 0.50. (The peak efficiency location was determined from previously run
computer simulations of turbine off-design performance). Turbine efficiencies were
then determined from the fitted parabolic curve for each test at the test values of
U/Co. These values of turbine efficiency, Figure 3.3-1, and the subsequently derived
TPA tare efficiencies were then divided into the corresponding values of overall
TPA efficiency to give the respective pump efficiencies. These calculated pump effi-
ciencies were then used as described in the pump analysis in Section 3.3.2 of this
report and noted as the corrected values.

3.3.1 Analysis Details

The analytical relationships used for turbine data reduction are
based on ideal gas properties and characteristics. Unfortunately, at the 2000 to 4000
psia turbine pressures involved, neither the GN2 nor the GOX working fluids
behaved as ideal gases with constant properties over the ranges of interest. It was
therefore necessary to derive “pseudo-ideal” gas properties. This was done by pick-
ing a characteristic turbine test operating point for each gas, determining the isen-
tropic enthalpy drop across the turbine inlet-to-exit conditions from the gas proper-
ties program MIPROPS (Ref. 8) and 1 sing the isentropic ideal gas relations to back
out the pseudo values for the specific heat at constant pressure (Cp), the gas constant
(R) and the ratio of specific heats (Gamma). The results of these calculations are
presented in Tables 3.3-1 and 3.3-2. These are the gas properties used in the subse-
quent analysis for the respective gases. Comparing turbine efficiency calculations
using these properties to the efficiency calculated for one GOX and one GN3 case
calculated using enthalpies determined directly from MIPROPS showed an
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BLE 3.
GN2 PSEUDO-IDEAL GAS PROPERTIES

h in, enthalpy 101.1
h ex 77
T in, temperature 491.81
T ex 400
p in, prescure 4225
pex 2083.2
rho in, density 20.73
rho ex 14.909
s, entropy 1.165
Cp, spedific heat, 0.262499
p = constarnt
Gamma ratio of 1.37832
specific heats -
R, gas constant 56.38326
TABLE 3.3-2
GOX PSEUDO-IDEAL GAS PROPERTIES

h in, enthalpy 82.1
h ex 63.8
T in, temperature 499.57
Tex 403
p in, pressure 3757.6
pex 1751.2
rho in, density 24.075
rho ex 16.563
s, entropy 1.128
Cp, specific heat 0.1895
Gamma ratio of 1.391514
specific heats

R, gas constant 41.38437

Btu/lbm
Btu/Ibm

°R

°R

psia

psia
Ibm/ft3
Ibm/ft3
Btu/lbm-°R
Btu/Ibm-°R

ft-lbf/1bm-°R

Btu/lbm
Btu/Ibm
°R

°R

psia

psia
Ibm/ft3
Ibm/ft3
Btu/1bm-°R
Btu/1bm-°R

ft-Ibf/Ibm-°R




3.3, Turbine Performanc:2 (Cont.)

approximately 1 percentage point difference in overall TPA efficiency. Since this is
far less than the discrepancy observed between calculated and predicted in the val-
ues discussed below, this “pseudo-ideal” gas property approach was deemed to be
reasonable.

An important quantity used in data reduction is the turbine flow
rate. Provision was made for measuring this quantity with an orifice flow meter
between the turbine and gas source. It was intended to use the standard orifice flow
meter relations from Ref. 12 but these yielded erroneous values, possibly due to im-
proper static pressure tap locations. Also, for several tests, valid static pressure mea-
susements were unavailable due to transducer problems. After the completion of
the testing and the teardown inspection of the hardware, an actual flow test of the
turbine nozzle was made to determine the actual "as-build" flow area. This was
considered necessary as all earlier calculations involving turbine flow area or flow
coefficient used "as designed" area and flow coefficient (0.945). A minor discrepancy
between these values could significantly effect the calculation of overall turbopump
efficiency. A test apparatus was setup and the turbine nozzle pressure drop was care-
fully measured while flowing gaseous nitrogen of known temperature and pressure.
The results of this calibration testing are presented in Figure 3.3-2. Based on this
flow data a flow area of 0.06237 square inches was calculated. This was less than the
design value by five percent, and served to reduce the TPA efficiency. This mea-
sured flow area was then used to calculate overall turbopump efficiency.

TPA tare losses were calculated by multiplying the tare horsepower
at the design point, (3% of the design turbine shaft horsepower), by the square of the
ratio of the test speed to the design speed. Turbine tare efficiency is then simply one
minus the ratio of tare horsepower to turbine shaft horsepower.

3.3.2 Discussion of Results

The turbine efficiency vs. velocity ratio (U/Co) data are presented
in Figure 3.3-1. The test data values were calculated as described in the previous sec-
tion. The test data show slightly lower efficiencies th  the predicted curve.
Insufficient data and analysis time hinder the investigation as to the reasons but
several possibilities should be considered:
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3.3, Turbine Performance (cont.)

1

2)

3)

4)

A potential leak was detected upon post-test teardown inspec-
tion at the “V” seal of the turbine nozzle to turbine housing
interface resulting in possible turbine by-pass flow. This
would reduce the working fluid flow through the turbine
resulting in reduced power output.

Upon post-test teardown inspection, the turbine nozzle vanes
were found to have a very rough surface finish compared to
the drawing value of 32 micro-inches. Also the rotor blades
were found to have parallel surface grooves running from
hub-to-tip on the central portion of the blades (the leading
and trailing edge regions had been polished smooth as far as
possible along the blade chord until interference with the ad-
jacent blade would not allow access to the central portions of
the blade surfaces). These large surface roughnesses would
increase blade losses but the ultimate effect on turbine per-
formance was not quantified for this report. A more detailed
acceptance inspection prior to assembly and testing would
possibly have detected these hardware deficiencies.

Calculated turbine performance is dependent on the accuracy
of the calculated pump performance at the 100% pun‘xp
design Q/N point. Any inaccuracies in the pump calcu-
lations and efficiencies will also be found in the calculated
turbine efficiency.

Design predictions are based on nozzle inlet and rotor exit
conditions whereas the test data reduction is based on turbine
inlet and turbine exit conditions. That is, the results pre-
sented in this report include inlet and exit manifold losses
lumped into turbine performance.
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3.0, Discussion of Results, (cont.)
34 BEARING SYSTEM PERFORMANCE

When operating the turbopump it is difficult to separate bearing perfor-
mance dwaracteristics especially in this design where functions of the bearings and
seals are combined. Some bearing performance can be inferred by the success of the
turbopump. Characteristics to be rated are:

¢  Clearance Control

¢ Flow Rate

e  Radial Motion of Shaft

e Axial Motion of Shaft

®  Load Capacity

e  Stiffness

*  Rotor Critical Speed

e  Oxygen Ignition Resistance

e  Wear Resistance

e  Start Transient Capability
Clearance Control {

The rotating assembly to stationary housing clearances were established
during the buildup procedure and are shown in Figure 3.4-1. These are the mini-
mum clearances for potential rub zones in the propellant. The only close clearance
in the GOX is the turbine tip seal at .005 in. All other close clearances exist in the
liquid oxygen. The bearing radial and axial clearances limit the rotating assembly
position. As shown in the figure the radial and axial bearing clearances are very
small and prevent other zones from having contact. Thermal deflection and
hydraulic loading will contribute to clearance change. This design conirols thermal
differential by using the same material throughout, by adequate cooling passages
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3.4, Bearin,, System Performance (Cont.)

(including the shaft bore) and by allowing radial temperature growth without
mechanical restraint. The housing and rotor are of robust proportions and the bear-
ing load capacities are large resulting in minimum deflections.

Flow Rates

Flow rates to both the turbine end and pump end bearings were supplied
from the pump discharge line. Bearing supply flow passed through 2 micron filters,
and each flow was measured with a turbine type fiowmeter. All flow through the
turbine end bearing passes through a flowmeter. The flow rate to the turbine end
bearing is shown in Figure 3.4-2. The measured flow and the predicted flow differ
considerably. The measured flow is approximately 2.5 times the predicted flow. The
flow through the bearing is controlled by the compensating orifices with a pressure
ratio of approximately 0.4.

Even with zero back pressure on the pocket the flowrates would be less
than what was measured. There are other leakage paths for this bearing supply flow
as it crosses housing joints. The bearing supply is fed through the housing across
the circumferential joints sealed by piston rings. Assuming the piston ring gap is
small, i.e., .0001 inch, the piston ring flow area is equivaient to the bearing flow area.
As is true for most ring seals, the effective gap will vary with the installation and
the groove dimensions. In the Series A and B tests (Ref. 1) two ring seals were
found to be stuck in their grooves allowing a 50 percent increase in flow. Despite
reasonable care in the installation for this TPA buildup a recurrence is possible
accounting for the higher recirculation flow. The ring grooves were reworked prior
to this test series, and the test data indicates the flowrate was reduced, but some
leakage around the ring seals is likely.

The pump bearing flowrate is shown in Figure 3.4-3 as a function of pres-
sure difference between orifice supply and the pump bearing exit cavity. This is the
flowrate supplied to three bearing faces, the pump journal, the first stage thrust face
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Figure 3.4-2. Turbine Bearing Flowrate vs Pressure Differential
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3.4, Bearing System Performance (Cont.)

and the second stage thrust face. The solid curve is the predicted flowrate for the
bearing alone while the data points include any leakage the piston rings may allow.
The test flowrate appears to follow a square root of pressure differential curve for a
relative to bearing flow area that would account for the additional flow area. It
should be noted here that the outer cylinder of piston ring seals will not exist in a
flight type turbopump which will eliminate a significant proportion of bearing sup-
ply flowrate.

Shaft Radial Motion

The shaft radial motion was monitored by a set of “X” and “Y” distance
detectors adjacent to the turbine end journal bearing. This cavity is a high pressure
zone exposed to the turbine exhaust pressure. This pressure reaches a design point
maximum of about 2300 psi. In order to make an oxygen compatible, low ignition
potential distance detector and accommodate the high pressure a distance detector
probe tip of alumina ceramic was used. This tip reduces the gap sensing range of the
probe and makes it very sensitive to temperature changes. As a result obtaining
reliable distance detectors readings is difficult. The probes were calibrated to operate
near LOX temperature and the axial probe in the pump inlet performed reasonably
well. The radial “X” and “Y” probes were in a zone prone to exceeding their range
due to temperature shifts. When the “X” probe was reading during a test the shaft
motion was stable with very small deflections approximately the same magnitude as
the surface runout. The pump “X” and “Y” distance probe signals combined to
display a shaft orbit. Several orbits from the series A and B for the pump end at
approximately 70,000 rpm are shown in Figure 3.4-4. A .002 inch step in the shaft
was used for speed signal generation and displacement calibration.

Shaft Axial Motion

An anomalous 170 Hz cyclic mntion was present during most of the test
runs. It is discussed in some detail in Section 3.1, and is considered an installation
caused phenomenon. It caused no problems during the TPA operation and is a
concern only because the actual shaft displacement during the cycling reduces the
clearances between the rotating assembly and stationary surfaces. Minimum clear-
ances of 1 to 2 mil are reduced to 1/2 to 1 mil during the cyclic motion.
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3.4, Bearing System Performance (Cont.)

Load Capacity

The thrust bearings provided high axial load support, high pressure
impeller sealing, high axial stiffness, and unassisted lift-off during start and stop
transients. The bearings were operated to high pressures subjecting the rotating
assembly to high axial forces. Typical calculated nominal net axial loads were
approximately 150 Ib. The absolute loads on each impeller disk are quite high on the
order of 5000 Ib. The thrust bearing axial capacity is shown in Figure 3.4-5 for the
design pressure differential. The bearing capacitv is a direct ratio of this pressure dif-
ferential which is determined by pump speed. Tue first thrust bearing sealing pres-
sure differential was 962 Ib/in.2 while the bearing orifice supply pressure differential
was 2612 1b/in.2 (Pppi-Pp). Axial motion of the shaft at a low constant frequency
existed (displacement probe output signal) during this test series. It obviously
loaded the thrust bearing. Thrust cyclic excursions were in the range of £.0005 in.
This requires several hundreds of pounds cyclic axial load to produce this motion.
Even with this adverse loading situation the thrust bearing maintained adequate
impeller vane clearance and thrust bearing clearance. The calculated thrust bearing
load during the unassisted “start transient” started at 24 Ib on the first stage thrust
bearing. This load definitely created metal-to-metal contact initially. Fourteen
unassisted starts were performed in LOX. The thrust bearings were found to be in
excellent condition posttest.

Radial loads on the journal bearings were determined by the impeller
peripheral pressure distribution. Loads cannot be measured directly but can be cal-
culated from the pressure distribution and the projected area. A summation of
radial load over the first stage impeller port width as a function of Q/N is shown in
Figure 3.4-6. The off-design Q/N tests were not all at the same speed. The speed and
Q/N followed a throttled engine operating requirement for flow and pressure. The
lower Q/N values were run at lower speed and pressure. In order to determine the
bearing radial loads the full impeller load must be calculated. Therefore, assuming
the pressure distribution is constant over the axial width of the impeller disk and
that the second stage impeller has the came peripheral pressure distribution, the two
impeller radial loads were calculated. These radial loads as a function of Q/N are
shown in Figure 3.4-7. The resulting radial bearing loads are shown in Figure 3.4-8
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3.4, Bearing System Performance (Cont.)

for the pump end journal bearing. The turbine journal bearing loads are less than 1
pound. At the 100% Q/N design point and maximum speed of 67000 rpm and
pump discharge pressure of 3350 Ib/in.2 the calculated pump journal bearing load is
85 1b. This radial load is equivalent to a bearing unit load of 295 Ib/in.2, which is
significant, but well within the capability of the bearing (approximately 1440 psi at
67,000 rpm).. Some excursions were experienced during start transients that resulted
in much higher radial lvads. On one LN test the peripheral pressure distribution
resulted in a pump bearing radial load of 230 Ib which is equivalent to 800 psi unit
loading.

Stiffness

The bearing stiffness of this turbopump was designed to control the rotor
radial and axial motion and prevent contact with the stationary components, espe-
cially in the turbine tip seal area. This means the bearings must be of adequate stiff-
ness to react to both static and dynamic loads. No direct measurement of stiffness
was made for two reasons: 1) special loading devices were not incorporated and, 2)
the distance detectors were very sensitive to temperature and accurate load
deflection characteristics were difficult to measure. The fact that only incidental
minor contact was made between the rotating assembly and the housing during the
extensive testing would indicate that the stifiness was adequate over the operating
range experienced.

Rotor Critical Speed

The rotor critical speed also a function of the bearing stiffness, was
designed to be above the operating speed by a wide margin at all times. Even
though distance detector operation was erratic, no indication of any resonance or
amplified whirl orbit or any indication of excess vibration on the accelerometers was
recorded. This includes all speeds up to a maximum speed of 80,394 rpm logged in
Test 135.
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3.4, Bearing System Performance (Cont.)

Oxygen Ignition Resistance

The turbopump oxygen ignition resistance feature is achieved through
two methods. First, the turbopump was designed to prevent contact between the
stationary and rotating components.

Secondly, materials were selected that have minimum burn factors and
sufficient strength while sustaining rubs and particle impact in oxygen. There were
a few minor rubs in the impeller vane area and a significant rub in the exit land at
the pump end journal bearing. There is no way of knowing the pressure velocity of
this rub. It appears to involve a third party wear particle. The results to date con-
firm the adequacy of the design as there is no evidence of any melting or localized
ignition.

Wear Resistance

Wear of this turbopump would likely occur only in the loss of close oper-
ating clearances between the rotating assembly and the stationary mating housirgs.
The close cleararnce locations are identified in Figure 3.4-1. Section 3.5, Teardown
and Inspection, defines the type of wear experienced at eaci: location. Photographs
show the mating surfaces. Profile traces are provided for each bearing surface. The
inspection results showed the pump end journal bearing exit land experienced the
most wear. The turbine journal bearing also experienced a small amount of wear in
one land but the remainder of the surface experienced very minor wear. There was
no significant symptom during the test program that would indicate wear was
occurring.

Some wear was anticipated during unassisted bearing starts. Since the
highest start load was in the axial direction it was expected that the thrust bearings
would experience the most wear. Several operational and mechanical anomalies
that could have precipitated the bearing wear are listed below.

1. The overspeed excursion during turbine valve malfunction
2. Unsymmetrical impeller pressure distribution during start transient

3.  Excessive radial load during operation

71




3.4, Bearing System Performance (Cont.)

4. Misaligned bearing (would cause contact at the outer corners of the
thrust bearing)

5. Disbond of silver plating
6. Debris particle(s) in the system (from a ruptured filter)

These are potential causes that could have happened during the test pro-
gram.

Wear of the bearing exit land will increase the bearing flowrate.
Fortunately the pump journal bearing combined with the first stage thrust bearing
exit flowrate, Qppg, was measured. Also the flow supplied to the compensating ori-
fices, Qppr, was measured. Not all the flow through the bearing was measured by
Qppj but a relative comparison may be made at different pressures. Comparing
Qprpe/QpaI Vs. test sequence in Figure 3.4-9 shows a significant change between tests
125 and 131 indicating wear occurred early in the test series. These are the first
rotating tests in LN with high pressure assist to the bearings before shaft rotation.

The material loss in the bearings, which occurred on the downstream exit
land of the pump journal bearing, appears to have been mechanically removed.
Debris from the fluid system or silver debris from a rus could have caused this wear.
An overload during the start transient may have created silver debris, but journai
overloads usually have unidirectional wear patterns. The observed wear was not
unidirectional. In addition, a small groove was worn on the shaft surface as
discussed in Section 3.5. Since the shaft is relatively hard, this groove could not
have been caused by soft silver. It is more likely that a hard particle from the fluid
system caused the wear on both the shaft and pump journal bearing surface. If
particles came from the supply system flow, the fluid velocity would direct them
towards the journal bearing and not to either of the two thrust bearings.

Since upon disassembly the upstream pump bearing filter was found to be
ruptured and since the pressure drop across this filter was higher than the turbine
filter and varied with time, it is concluded that hard debris passed through the
pump journal bearing and caused the exit land wear.
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3.4, Bearing System Performance (Cont.)

Start Transient

Several options for dealing with bearing start stop transients when using
hydrostatic bearings are:

1. Unassisted start (rubbing-hydrodynamic-hydrostatic)

N

. Series hybrid ball bearing/hydrostatic.

w

. Parallel hybrid ball bearing/hydrostatic
4. Accumulator
5. Magnetic lift-off.

Two of these options considered for the OTV turbopump are the accumu-
lator and the unassisted start. Factors to consider when selecting the start technique
are the applied radial and axial loads, material wear resistance, number of revolu-
tions until pump pressure rises, turbine torque available, and the condition of the
propellant in turbopump (phase, temperature, and pressure).

In this test series the bearing assist start (accumulator) was used for most of
the tests. The unassisted starts with transition to pump discharge fed bearings were
done only in the final LOX tests. All of the LN tests were tank fed at higher pres-
sure than the pump discharge pressure. This was done to maintain high bearing
stiffness. The rotor speed was designed for oxygen, but the fluid density of LN2 is
lower than LOX and, therefore, the pump discharge pressure was lower. Also on all
LN3 tests the bearings were lifted prior to rotation with external tank pressure. The
relative pressures vs. speed for LN3 are shown in Figure 3.4-10. In the turbopump
performance test series with LOX, (C2 and E1), the bearing assist was set to 200 to 500
Ib/in.2. When the pump discharge pressure surpassed the bearing assist pressure,
the bearing feed line check valve opened and the bearings were pump fed. The
pressure vs. speed data for this type of transient is shown in Figure 3.4-11. This
bearing assisted start maximizes the life of hydrostatic bearings during transients.
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3.4, Bearing System Performance (cont.)

During its operational life the turbopump will have hundreds of starts
that begin with a low speed shaft rotation at low oxygen pressure. The LOX has very
low viscosity which reduces its lubrication effectiveness. The contacting surface
must provide their own capability to rub without significant wearing. It must be a
low friction rub otherwise the energy generation becomes a hazard with LOX at all
rub points. A well-proven design for such a situation is to have a hard, slick
rotating material contacting a softer, yielding stationary material. If there is any
wear it should be to the stationary surface which will have sufficient sacrificial
thickness to last through the life of the component. A design corollary is that
material removed by rubbing must be of a size and composition that will not harm
the components downstream. The materials selected were silver bearing plating
operating against a hard chrome shaft surface. Silver is a low burn factor material
which has high resistance to ignition in oxygen. Energy generated during the tran-
sient is dependent on the applied load, the rubbing distance and speed just before
lift-off. The pump discharge and bearing pressure as a function of speed is shown in
Figure 3.4-12 and Figure 3.4-13 for an unassisted bearing start transient with GN3 in
the turbine (Figure 3.4-12) and with GOX in the turbine (Figure 3.4-13). The load on
the rotating system during the start transient is the rotor weight, .6 Ib, on the journal
bearings and approximately 24 Ib axial load on the first stage thrust bearing. This
load comes from the pressure-area force differential between the pump inlet (50-70
psi) and the turbine exhaust (ambient). This causes an axial load that would not be
there in a flight type turbopump system. The real system is an arrangement where
the boost pump, main pump, heat exchanger, and turbine are in series. In that situ-
ation only a small pressure drop exists on the rotor, which is a small axial load,
during the start transient. In our test setup the inlet pressure was fixed and the tur-
bine back pressure was a function of turbine supply pressure. The pump inlet pres-
sure and the turbine inlet pressure were two separate sources. The start transient
was controlled by the turbine inle\ supply pressure. As the turbine pressure in-
creased the turbine torque increased and turbine back pressure increased, decreasing
the rotor axial load. Turbine pressure ramp rates were keyed to acceleration rates
slow enough that they did not decrease pump inlet pressure to less than 40 psia yet
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3.4, Bearing System Performance (cont.)

fast enough to achieve the highest shaft speed and pump discharge pressure before
supply tank pressure decayed. Typical test pressure vs. time characteristics are
shown in Figure 3.4-14.

During these start transients the axial distance detector indicated non-con-
tact rotation after approximately 10 revolutions. The speed at this time was in the
range of 15,000 rpm. During the test series D and E1 which were LOX/GN3 and
LOX/GOX tests, respectively, 14 unassisted start/stop transients were performed.
The axial thrust bearing condition on teardown after the entire test series was excel-
lent. The journal bearings had some wear which was diagnosed as occurring during
the initial rotation tests in LNa.

Both tank fed and unassisted bearing start transients were demonstrated
for this turbopump and both techniques were successful. The bearings did contact
with the shaft during unassisted start transients. These tests demonstrated the
material wear resistance and oxygen ignition resistance of the design, and the
bearing ability to maintain impeller and turbine clearances over the full range of
operating conditions.
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3.0, Discussion of Results (cont.)
35 TEARDOWN AND INSPECTION

- After completion of test series C, D, and E, the turbopump was taken to
Development Operations Assembly clean room for post test inspection. The turbo-
pump was basically in very clean condition. The bolt removal was very positive
without any suggestion of galling. Two fittings on the turbine end of the outside
housing were starting to gall and therefore were not removed. The outer housing
inlet elbow and the the turbine nozzle were removed. At this point, shaft rotation
and turbine tip clearance at the tip seal was checked. The shaft rotated freely and the
radial clearance between the turbine rotor and the turbine tip seal was consistent
with the pre test dimensions. A slight post test eccentricity was observed which is
due to the minor rubbing/wear experienced by the bearing components. The mea-
sured tip seal clearance is shown in Figure 3.5-1 for concentric and eccentric
positions.

The turbopuinp disassembly was completed and the condition of the
major parts are shown in Figure 3.5.2. The general condition was excellent with
some local rubs on the journal bearings, shaft journals and impeller vane mating
contours. The rotating assembly cross section is shown in Figure 3.5.3 and the rotat-
ing assembly after testing in Figure 3.5.4. The turbine end journal surface shows
minor scratches and the pump end iurnal surface shows the burnish work from
the balancing procedure and a small groove towards the pump end of the journal.
A close up of these two journal surfaces are shown in Figures 3.5-5 and 3.5-6. A
profile of the turbine end surface is shown in Figure 3.5-7 indicating minor
scratches. An axial profile trace at the pump end journal surface is shown in Figure
3.5-8. This shows a sharp groove approximately .0013 in. deep at the approximate
axial location of the pocket to exit land entrance. This groove would suggest a
particle possibly trapped in the pocket wearing on the chrome coated shaft surface.

The first stage impeller thrust surface, Figure 3.5-9, shows some minor cir-
cumferential scratches in the area of the mating hydrostatic bearing pocket. This
was the highest loaded bearing of the system during the unassisted start transients.
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3.5, Teardown and Inspection (cont.)

The second stage impeller thrust surface, Figure 3.5-10, indicates essentially no con-
tact. The radial marks over the surface are grinding marks under the thin dense
chrome coating on this surface.

The condition of both the pump end bearing and the turbine end bearing
are shown in Figure 3.5-11. Generally the condition of both bearings is very good.
The pump and thrust bearing face shows some n.aterial collection at the end of the
pockets and material removed from the journal bearing bore at the exit land adja-
cent to the first impeller. The sphericzl surface was in excellent condition and all
passages within the bearing were clean and free of any obstructions. The turbine
end bearing had some material removed from the exit land at the turbine side.
Disassembly of this part showed the spherical surface to be in excellent condition
again with all passages clean and free of any obstructions. A close up view of this
bearing surface is showi: in Figure 3.5-12. From the close up photo it appears that
some of the silver plate may have been mechanically dislodged or smeared and
became a third member wear particle The profile of this surface is shown in
Figure 3.5-13.

Close up photos of the pump bearing from the first stage side,
Figure 3.5-14, and from the second stage side Figure 3.5-15 show that the wear occurs
at the first stage exit land. A significant portion of the silver plating on the exit land
has been removed or smeared in the circumferential direction. An axial surface
profile across the bearing bore between the four pockets is shown in Figure 3.5-16.
From these profiles and the photos it is obvious that the predomirant wear
occurred on the exit land. The rest of the bore :s close to original condition. It
appears that once wear started on the exit land the debris moved circumferentially
removing the silver plating. Mentioned earlier was the fact that a groove was
carved in the chrome coating on the shaft. This would indicate a hard particle to
wear a groove in the hard chrome surface. With this exit land worn the journal
bearing flowrate will increase. Subsequent disassembly of the pump enc. bearing
supply filter showed a ruptur:d filter element. In addition, the pressure drop on
this filter was higher than the turbine end filter and also varied with time. The con-
clusion is that debris passed through the pump journal bearing.
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3.5, Teardown and Inspection (cont.)

The first stage thrust bearing is shown in Figure 3.5-17. There is some
scuffing of material between the pockets and the mating rotating surface and this is
the highest loaded bearing surface during the start transient. There are slight bur-
nish marks on the inlet and exit lands. The second stage thrust bearing surface is
shown in Figure 3.5-18. This surface shows some minor circumferential scratches
between pockets and just inside the pockets. In evidence are random surface
scratches that have occurred during manufacturing and handling over the past two
years.

The pump bearing cup is shown in Figure 3.5-19. The silver sphere is in
excellent shape but with several discoloration marks near the sphere outside diame-
ter. These marks are shown close up in Figure 3.5-20. Contact scratches were evi-
dent in this zone with corresponding discolored marks on the pump bearing sphere.
Contact at this location on the sphere is a logical condition. This location on the
sphere is at a maximum diameter and the radial clearance is not adjustable. The
axial clearance is adjustable to compensate for increasing load with increasing pump
pi2ssure. In addition as axial load is applied to the bearing cup the cup *ends to twist
about a diametral axis inward at the maximum diameter. Contact locations are dia-
grammed in Figure 3.5-21 for the sphere and the pump journal bearing. Light
contact is not considered detrimental.

The second stage impeller housing shown in Figure 3.5-22, is in excellent
condition. Two things were found on this part. First, there was slight trace of dis-
coloration in the pump inlet and a small amount in the bearing area. This sub-
stance was a very thin tan powder (oxidation?). There was the same substance in
the first stage diffuser passage but not in the crossover passages. Second, a small
amount of imapeller vane contact on the silver housing contour was experienced.
This minute contact is shown close up in Figure 3.5-23. This contact occurred where
the radial surfoce of the impeller housing contour enters the housing inner radius.
This was the point of minimum clearance during the turbopump assembly and
probably contacted during ascembly.
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Figure 3.5-19. Pump Bearing Housing ATC Photo #C0489 1872
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Figure 3.5-21. Contact Locations on Pump Bearing Assembly

104




Eoi? 4
590

R
%

bodoh
&
7

v

St 8
vt

£
£

Figure 3.5-22. Second Stage Impeller Housing ATC Photo #C0489 1871

105




6981 6800# 0I0Ud VLY Inojuo) pnoays Jajedwy obels puoses "£z-6'¢ ainb
-G'¢ ainbi4

co'r R

 evars et




3.5, Teardown and Inspection (cont.)

The first stage housing impeller contour also had a iocal burnish mark.
This contact is shown in Figure 3.5-24. On this surface the contact was light and on
the radial portion of the surface near the outer diameter of the impeller. The turbo-
pump was assembled with .002 inch axial clearance at the impeller vane tips. A
small amount of silver pickup was found on two vane tips at the diameter of the
contact.

The turbine disk appeared in excellent condition. There were no marks
indicating any contact on the turbine blade tips and basically all original machining
marks were still visible as shown in Figure 3.5-25. This is onc of the key features of
the design. The turbine must operating at close tip clearance without making con-
tact in gaseous oxygen.

The turbine nozzle was in very good condition. Some difficulty was expe-
rienced with the gas piston ring seal, the location of which is identified in Figure 3.5-
26. The piston ring was a two piece design, a seal ring, and an expander ring. The
assembly of this ring was deep inside a blind housing and the expander ring held the
seal ring out of the groove and could never be assembled. Therefore a modification
was made to the end of the nozzle piece to accept a metal “V” seal. The nozzle end
surface and the mating housing had about .010 inch clearance when assembled. The
“V” seal was the same seal used for the turbine discharge flanges. Since the mating
surfaces have clearance the seal groove depth was selected accordingly. On disas-
sembly of the housing the seal appeared to have been offset in the groove, Figure
3.5-27. It is possible that a complete seal was not made and that some portion of the
turbine flowrate bypassed the turbine through this seal. It appears that the groove
O.D. was too small for the O.D. of the compressed “V” seal. It is recommended that
this diameter be opened prior to the hot GOX test series at White Sands Test Facility
(WSTF).

The turbine nozzle exit is shown in Figure 3.5-28. The axial clearance
between the nozzle and the turbine wheel is approximately .040 inch. As expected,
no evidence of contact was found in this area. Some contact indentations are seen
near the outer diameter that mates with the turbine housing. This is an expected
contact area.
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Figure 3.5-25. Turbine Blades
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3.5, Teardown and Inspection, (cont.)

The mating turbine housing is shown in Figure 3.5-29 looking from the
turbine inlet. This part is in excellent condition with no contact at the shaft
labyrinth gold wear surface. A close up view of the turbine tip seal is shown in
Figure 3.5-30. The gold tip seal surface has a small circumferential groove at the
entrance to the turbine blades. Since there are no marks on the turbine blades it is
possible a particle passing through the turbine made this mark. The axial scratches
seen on the gold seal surface are from the shim material used for determining the
installed turbine tip clearance.

An anomaly noted on disassembly on the pump interstage crossover lines
was that the welded flange ends were offset approximately .010 inch from the tube.
This offset is shown in Figure 3.5-31. All four ends had similar offsets. This offset
will adversely affect the pump efficiency and is undesirable to have sharp corners
and edges in oxygen from an ignition consideration. Therefore these offsets will be
corrected before the next test series.

3.6 CONCLUSIONS

A liquid oxygen turbopump with 860°R gaseous oxygen turbine drive was
designed for a 3750 Ib thrust dual expander cycle rocket engine. This turbopump
which requires no interpropellant seals or purges, features a 156 hp, single stage full
admission impulse turbine, axial flow inducer, a two stage centrifugal pump with
unshrouded impeller., lung-life LOX lubricated, self-aligning, hydrostatic bearings,
and a subcritical rotor design. It is constructed of Monel, a nickel-copper alloy,
which has low ignition potential in oxygen. The pump was designed to deliver 34.7
gpm of liquid oxygen at a discharge pressure of 4655 psia and a shaft speed of 75,000
rpm. Completion of test series “Cy", “C2", “D”, “E1”, and “Ep"” has successfully
demonstrated several of the critical performance characteristics of this unique GOX-
driven LOX-turbopump. Critical characteristics demonstrated are listed below.

1. Turbopump demonstrated in LO;
2. High discharge pressure demonstrated /achieved

3. High speed demonsirated
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3.6, Conclusions, (cont.)

4.

5.

10.

11.

12.

13.

14.

High load capability hydrostatic bearing system demonstrated

Low burn factor materials running at close clearance and high pres-
sures demonstrated in LOy

Full hydrostatic self aligning LO2 bearing demonstrated

Structurally and thermally layered turbopump mechanical design
concept demonstrated

Pump throttled off-design performance demonstrated
Feasibility of close clearance open impeller design demonstrated

Sub-critical axial and radial rotor operation to speeds in excess of
design speed demonstrated on Test 135 where an overspeed on shut-
down reached 80,394 rpm

Low radial loads demonstrated with dual discharge
GOX driven turbine feasibility demonstrated
Tank fed bearing (assisted) start demonstrated

Unassisted bearing start demonstrated in LO; with GOX turbine drive

Although life testing and testing with warm (860R) GOX in the turbine
must be conducted in the next test series, results of the testing to date indicate a GOX
driven LOX turbopump is feasitle.

3.7 RECOMMENDATIONS

Some improvement should be made to the bearing feed system to reduce
excess leakage. The outer cylinder piston ring total circumferential length is 74.6 in.
and the inner cylinder piston ring total length is 45.2 in. In a flight type turbopump
design the outer cylinder set of piston rings would be eliminated which is equiv-
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3.7, Recommendations, (cont.)

alent to 62% of the piston ring leakage area. As a point of reference the total circum-
ferential length of the bearing exirt flow area is 10.99 in., approximately 25% of the
total piston ring length.

Prior to the warm GOX drive test series several tasks are recommended, as
noted throughout the text, and are summarized below:

* Resurface journal bearings

Refurbish distance detectors

¢ Rework turbine nozzle static seal

Replace static seals at Military Standard (MS) fittings

* Analyze the shaft axial oscillation phenomenon

Fabricate new external crossovers to eliminate flange mismatch
* Add additional instrumentation capability to ne'v crossovers

The proximity probes or distance detectors caused considerable delay and
the abort of some test runs due to a shift or loss of signal. A more thermally for-
giving probe is needed to correct these problems prior to any subsequent testing.
Despite the numerous test runs the available probes were never able to provide a
usable shaft motion for all three axes at the same time. Most runs had only one
probe operating with another intermittent. One probe must operate to give a speed
indication or the run is aborted. This is critical instrumentation for both testing and
turbopump health diagnosis. Better probes need to be identified and procured. If
they are not available commercially, the NASA-LeRC sponsored development work
on a multichannel 3 axis probe should be completed to provide a usable device. (See
Reference 14.)

Additional information on the OTV engine turbopump is available in
References 14 and 15. Additional OTV systems background can be found in
References 16 and 17.
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APPENDIX A
DATA REDUCTION EQUATIONS




a.

Pump Overall Pressure Rise (DELTAPO) psid
Assumptions:

1. Measured parameter nomenclature is per Test Lab Instrument
Nomenclatures, Section 2.1.2.4, Table 2.1-3 and Table 2.1-4 whe:e not
defined in this Appendix.

2. Fluid density (¢ Ibm/ft**3) as a function of fluid temperature at that
location.

S «[FMS]*0.321

Pin = PS + 2#32 2%144 (1; /4*Din**2 ) **2, where Djn = Pipe diameter at PS.

__Soui __»(FMPDI*0.321

Pouti = PD2; + 2%32.2*144 " (1: /4*Doyt **2 )’*2, where Doyt = Pipe diameter at
PD2-E and PD2-W. See u. for FMPDI.

i = 1,2 (for pump discharge locations, 25D1 and 2SD2)

¢in = f (TS)

Couti = f ('I'PDI), i, I= 1,?

Pout is the average of the Powi at the two pump discharge locations, 25D1 and
2SD2.

DELTAPO = Poyt - Pin

Pump Overall Head Rise (DELTAHO) ft

»
DELTAHO = (Gin + Sout)/2

Pump Specific Speed (NPSPT,NSI) (rpm)(gpm)-5/(ft)-75

¢l Delivered Overall Specific Speed

_ NTFMPDEFMPDW
(DELTAHD)

NPSPT

A-2



¢2 Inducer Speafic Speed

_ NT*FMSL _ PS) = '
NSI = (DELTAHI)’S where DEL TAHI = (PBPH-PS) = 144/ Gbp

Pump Net Positive Suction Pressure (NPSPT ,NPSPI) psid
d.1 Inducer Net Pos:uive Suction Pressure
NPSPI = Pin, - Pyi
d.2 Centrifugal Impeller Net Positive Suction Pressure
NPSPT = Pin + DELTAPI - Pyisp
where:

Pyi = inlet vapor pressure as a function of TS

Pypp = vapor pressure at injucer discharge as a function of TBPD
Note: See line g for application

Pump Net Positive Suction Head (NPSHPT,NPSHI) ft

e.l Inducer Net Positive Suction Head
NPSHI = NPSPI*144/¢in

e.2 First Stage centrifugal Pump Net Positive Suction Head
NPSHPT = NPSPT*144/¢pp
¢in and Cbp are function of TS and TBPD, respectively.

Pump Suction Specific Speed (SPT,SI) (rpm)(gpm)-5/(ft)-75

f1 Inducer Suction Specific Speed

g = NT*VEMSL
(NPSHI)75

A-3




£2 First Stage Centrifugal Pump Suction Specific Speed

_ NPFMSI-FMBPD
(NPSHPT)”

SPT

g  Pump Inducer Pressure Rise (DELTAPI) psid
DELTAPI = PBPH - PS

Note: Assumes the velocity head at suction and boost pump supply
housing are the same.

h. Pump Inducer Head Rise (DELTAHI) ft

DELTAHI = DELTAPI * 144/¢pp

i. Pump Efficiency (f) Delivered Fluid Power and Fluid Losses determined
from Temperature Rise (ETAP)

ETAP = HPPT/HPSF

j.  Pump Shaft Power (f) [Delivered Fluid Power + (Hydraulic Power Losses (f)
Temperature Rise)]

HPSF = HPPT+HPLOSS

k. Delivered Fluid Power

HPPT = ¢out * FMPD * DELTAHO/550/448.8, where FMPD = FMPDE +
FMPDW

1. Hydraulic Power Loss based upon Temperature Rise
HPLOSS = HPHEAT + HPBLEED

Centrifugal pump friction loss (f) temperature
= [gout* FMPD * Cp * (TPD-TS) + Note: See m for FMPD definiton




Pump bearing flow work + friction loss (f) temperature
cpb1 * FMPBI * Cp * (TPBE-TPBI) +

Turbine bearing flow work + friction loss (f) temperature
cpb2 * FMTBI * Cp * (TPBE-TBD] *
(3600/2545/448.8) +

Boost Pump Hydraulic Turbine fluid power
[sbp * FMBPD * DELTAHI +

Pump Bearing Exit (overboard) Flow work minus Pump Bearing
Recirculated Siow work

Cbe * (FMPBE-FMPBI) *

(DELTAHO/2)]/448.8/550 Note: Uses only 2nd stage
head rise, half of DELTAHP

Gout = £ (TPD) where TPD = (TPD1 + TPD2)/2
Gpb1 = f (TPBD)

Gpb2 = f (TBI)

cpp = { (TBPD)

Gbe = f (TPBE)

Cp is the fluid specific heat as a function of local temperature. ~0.49
Btu/Ibm/R for LN

~0.405 for LOX
Pump Weight Flow Rate (PMPD) (Ibm/sec)

PMPD = (FMPDE+FMPDW)*Goyt/448.8




aa.

Pump Power (HPPT) HP

HPPT = HPSF — HPLOSS (Rearranged from line j)

Pump Flow Rate to Speed Ratio (QI/N, QP/N) gpm/rpm

QI/N = FMSI/NT

QP/N = FMPDE+FMPDW-FMPBI-FMTBI)/NT

Pump Head Rise to Speed Squared Ratio (DELH0/N2) ft/rpm**2)
DELHO/N**2 = DELTAHO/NT**2

DELPB = PPBI-PBE, Pump Bearing Pressure Differential, psi
DELTB = PTBI-PTBC, Turbine Bearing Pressure Differential, psi

PD2= BDELZMH’ Average Pump Discharge Pressure, psi

NRT = NT/VTTI+460, Turbine Speed Parameter

FMPDI = FMPDE + FMPDW, Total Pump Discharge Flow, gpm
ETAST = ETATPA/EFFPD, Turbine Total to Static Efficiency
HPPUMP = HPSFPD, Pump Horsepower

HPDIS = HPPFL, Fluid Horsepower

HPTARE = [gpp * FMBPD * DELTAHI + ¢out * (FMPBI + FMTBI) *
DELTAHOJ*

448.8 * 550- TARE Horsepower

For Pump Delivered Fluid Horsepower

HPPEL = ¢out * (FMPDI - FMTBI - FMPBI) * DELTAHO/550/448.8, Fluid
Horsepower
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ac.

ad.

ae.

Original Predicted Design Efficiency
EFFPD = -0.074437 + 3809.4314 * (QP/N)
- 8202769.6* (QP/N)2

+5.65306 *109 * (QP/N)3

HPSFPD = %EFBP%, Calculated Predicted Pump Horsepower based on

Predicted Design Efficiency
HPPFL = pump delivered fluid horsepower = HPPT
Overall turbopump efficiency, ETATPA
ETATPA = HPPFL * 550/ (WDOT * DHI * 778),
where: WDOT = turbine gas flow rate, Ib/sec
DHI = CP * (TTI + 460) * (1-(1/PRS)**
((GAM-1)/GAM))
and  CP = gas specific heat at constant pressure, Btu/1b°R
GAM = gas specific heat ratio
PRS = total to static pressure ratio
TTI = turbine gas total/inlet temperature, °F
Turbine Blade Mean Sgeed to total to static gas Spouting Velocity ratio
uce = u/Co = turbine blade-spouting velocity ratio
where: u=DBAR*NT *zn /(12 * 60)
DBAR =1.333/12 = 0.11108 ft.

T =3.14159



Co = (2*32.174 * 778 * DHI**0.5
af. Turbine flow parameter
ol
sec
Tf

WRTP = WDOT*SQRT (R*(TTI + 460))/PTI, in.”

Floppy diskettes, plots and performance calculations were recorded for the
following selected tests:

Test 154, 156, 164, 165, 167, 169, 171,172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 185, 186, 187, 188, 189, and 190.

NT was defined as NT-Z for calculating performance in all tests
except for the following: Test 154, 169, 181, 186. NT-X was used as NT in these cases"
for performance calculation purposes.
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APPENDIX B

TEST DATA PLOTS FROM HIGH PRESSURE
HIGH SPEED LOX/GOX TEST NO. 2459-D02-OP-183
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DELPB
DELTB
ETATPA

FMBPD
FMPBE
FMPBI
FMTBI
FMPD-E
FMPD-W
FMBI
HPDIS

PBE
PBPD
PBPH
102

PD2-E
PD2-W
PDTR
PIM1
PIT2
PPBI
PPP1
PPP2
PPP3
PPP4
PRS

PTBC

PSI
PSI

GPM
GPM
GPM
GPM
GPM
GPM
GPM

RPM
PSIA
PSIA
PSIA
PSIA

PSIA
PSIA
PSIA
PSIA
PSIA
PSIA
PSIA
PSIA
PSIA
PSIA

PSIA
PSIA

SYMBO

APPENDIX B

Delta Pressure Across Pump Bearing

Delta Pressure Across Turbine Bearing
Efficiency Ratio - Pump Fluid Power Out/Turbine Gas Total to
Static Power In

Flow Meter Boostpump Drive

Flow Meter Pump Bearing Exit

Flow Meter Pump Bearing Inlet

Flow Meter Turbine Bearing Inlet

Flow Meter Pump Discharge - East

Flow Meter Pump Discharge - West

Flow Meter Suction Inlet

Delivered Fluid Horsepower

Speed Turbine - Z Axis Probe

Pressure Pump Bearing Exit 1

Pressure Boost Pump Turbine Drive Line
Pressure Boost Pump Housing Annulus
Pump Discharge Average Pressure -
[(PD2-E) + (PD2-W)}/2

Pressure Discharge 2nd Stage - East
Pressure Discharge 2nd Stage - West
Pressure Drive Turbine Run Tank

Pressure Impeller Wall, Mid Station 330°
Pressure Impeller Wall, Tip Station 300°
Pressure Pump Bearing Inlet

Pressure Pump Peripheral Wall, Station 0°
Pressure Pump Peripheral Wall, Station 270°
Pressure Pump Peripheral Wall, Station 180°
Pressure Pump Peripheral Wall, Station 90°
Turbine Pressure Ratio - Total to Static
Pressure Suction Line

Pressure Turbine Bearing Cavity
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Appendix B, Symbols, (cont.)

PTBI
PTD-E
PTDH
PTD-W

TBI
THX9

TDORE

AL aval

TTBHS8
TTDM

TTIPHIO
WDOT
WRTP

PSIA
PSIA
PSIA
PSIA
PSIA
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
DEGF
LB/SEC

Pressure Turbine Bearing Inlet

Pressure Turbine Discharge - East (TD2)

Pressure Turbine Discharge Housing

Pressure Turbine Discharge - West (TD1)

Pressure Turbine Inlet

Temperature Bearing Inlet

Temperature Housing Exterior No. 9

Temperature Pump Bearing Exit

Temperature Suction Line

Temperature on Turbine Bearing Housing Exterior No. 8
Temperature on Turbine Discharge Housing Exterior
Temperature on Turbine Housing Exterior No. 7
Temperature Turbine Inlet Gas

Temperature on Pump Housing Exterior No. 10
Turbine Weight Flow Rate

(LBM/SEC)(°R**0.5)/(LBF/IN**2) Turbine Flow Parameter




APPENDIX C

SYMBOLS AND ACRONYMS




SYMBOLS AND ACRONYMS

Symbol Meaning Dimensions

A Actual flow area inches squared
Btu British thermal unit 778.98 (ft-Ibs)

Ca Ratio of empirical to "blueprint” nozzle area _—

Co Gas spouting velocity as a function of total to static ft/sec

pressure ratio

G Specific heat at constant pressure Btu/{Ib x °R)
cpm Cycles per minute 1/min.

D,DIA  Diameter inches

F Force Ibs

°F Degrees Fahrenheit °F

ft Feet feet

G Earth gravitational constant 32.17 ft/sec?

GAL. Gallon gallon
GHe Gaseous helium —
GN2 Gaseous nitrogen —
GO, Gaseous oxygen —
gpm Volumetric flow rate gal/min.

h Enthalpy Btu/Ibm

H Head of fluid flowing; Head rise feet

hp, HP  Horsepower 33,000 ft. Ib/min.

Hz Cycles per second 1/sec
H; Hydrogen —_
in. Inch in.
KHz One thousand cycles per second 1000/sec

Kpsia ~ One thousand pounds per square inch 1000 Ib/in.2

L Length feet; inch

b Pound Ib
1bf Pound force Ibf
Ibm Pound mass Ibm

min, MIN. Minute min.

N Angular speed rev/min.
NT Turbine angular speed rev/min.
Pp Pressure 1b/in2

psia, PSIA  Absolute pressure Ib/in.2
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Symbols and Acronyms, (cont.)

Symbol _ Meaning Dimensions
psid, PSID  Differential pressure rise Ib/in.2
psig, PSIG  Gage pressure (pressure above atmospheric) Ib/in.2

Q Volume flowrate gal./min,
R Gas constant (f)(bf) / (°R)(Ibm)
R Radius inches
°R Temperature in Degrees Rankine °R
rho Specific weight Ibm/ft3
rpm,RPM  Angular speed rev./min.
S Entropy Btu/(Ibm x °R)
sec, SEC Time sec.
shp Shaft power hp
T Temperature °F, °R
U Liner velocity ft./sec.
® Weight flow rate Ibm/sec
S Specific weight average from entrance to exit Ibm/ft3
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Symbols and Acronyms, (cont.)

AX

ex

F.f

in

PDI

1s

SUBSCRIPTS
Axial
Design
Exhaust
Force

At entrance location
Mass

Unitless number
Initial state condition
Pump bearing Inlet
Reynolds number

First Stage

At exit location, number of atoms
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Symbols and Acronyms, (cont.)

Aerojet
Boeing
C/A
dsk
EFF, eff
F
F.S.2
GOX, GO
GN2
H, H
hyd
LD.
JsC
K
LERc
LN
LO;
LOX
MCSFC

NASA

0,0,
OAST

ACRONYMS
Aerojet TechSystems
The Boeing Company
Thermocouple material chromel-alumel
Disk
Efficiency - delivered power/input power
Fuel
Fire Switch (number 2) at the end of engine firing
Gaseous oxygen
Gaseous nitrogen
Hydrogen
Hydraulic
Inside diameter
Joint Spacecraft Committee
Temperature, Kelvin
Lewis Research Center
Liquid nitrogen
Liquid oxygen
Liquid oxygen
Marshall Spaceflight Center
Number, dimensionaless
National Aeronautics and Space Administration

Oxygen

Office of Astronautics and Space Transportation
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Symbols and Acronyms, (cont.)

O.D.
oTvV
OTPA

PBE

PBI

PV
RL-10

TBD
TPA

Outside diameter

Orbit Transfer vehicle

Oxygen Turbopump Assembly

Pressure rise

Pump Bearing exit

Pump Bearing inlet

Pressure times velocity

Pratt and Whitney Aircraft Company

Fobled rorker enine e

gine

To Be Determined

Turbopump Assembly

Distance detector centerline inclination from the vertical
at 120° and normal to the shaft centerline

Distance detector centerline inclination from the vertical
at 210° and normal to the shaft centerline

Distance detector centerline is horizontal and parallel to
the shaft centerline

Diameter
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Abstract N U'W')”
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| =>This report covers the testing of a rocket engine oxygen turbupumpluung high pressure ambient temperature

nitrogen and oxygen as the turbine drive gas in separate test series. The pumped fluid was liquid nitrogen or
liquid oxygen. The @rbepump €TPAYis designed to operate with 400 “F oxygen wrbine drive gas,which will be
demonstrated in a subsequent test serics. The TPA Hydrostatic Bearing System was demonstrated iy tests
documented in the first volume of this report. Following bearing tests, the TPA was finish machined (impeller
blading and inlet/outlet ports). Jesting started on_15 February 1989 and was successfully concluded on 21 March
1989, Testing started using nitrogen to reduce the ignition hazard during initial TPA checkouf"l’hexﬂ'ydmswtic
Béarin;,@stcm requires a Bearing /Pfessurization Sgstem.,lnilial testing used a separate bearing supply to prevent
a rubbing start.“Two iest serics were successfully completed with the bearing assist supplied only by the pump
second stage output which entailed a rubbing start until pump pressure builds up. The final test serics used
ambient oxygen drive and no exiernal bearing assist Total operating time was 2268 seconds. There were 14
starts without bearing assist and operating speeds up to 80,000 rpm were logged. Teardown examination showed
some smearing of silverplated bearing surfaces but no exposure of the underlying monel material. There was no
evidence of melting or oxidation due to the oxygen exposure. The articulating, self-centering hydrostatic bearing
exhibited no bearing load or stahility problems. The only anomaly was higher than ggedictcd flow losses which
were attributed 1o a faulty ring seal. The TPA will be refurbished prior 10 the 400 “F oxygen test series but its
condition is acceptable, as is, for continucd operating. This was a highly successful test program.
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